Клеточная мембрана

Алексеева Мария Юрьевна
Автор: врач-терапевт
Мочалов Павел Александрович
Редактор: к. м. н. врач-терапевт
Клеточная мембрана

Все живые организмы на Земле состоят из клеток, а каждая клетка окружена защитной оболочкой – мембраной. Однако функции мембраны не ограничиваются защитой органоидов и отделением одной клетки от другой. Клеточная мембрана представляет собой сложнейший механизм, напрямую участвующий в размножении, регенерации, питании, дыхании и многих других важных функциях клетки.

Термин «клеточная мембрана» используется уже около ста лет. Само слово «мембрана» в переводе с латыни означает «плёнка». Но в случае в клеточной мембраной правильнее будет говорить и совокупности двух пленок, соединённых между собой определённым образом, причём, разные стороны этих пленок обладают разными свойствами.

Клеточная мембрана (цитолемма, плазмалемма) – это трёхслойная липопротеиновая (жиро-белковая) оболочка, отделяющая каждую клетку от соседних клеток и окружающей среды, и осуществляющая управляемый обмен между клетками и окружающей средой.

Решающее значение в этом определении имеет не то, что клеточная оболочка отделяет одну клетку от другой, а то, что она обеспечивает её взаимодействие другими клетками и окружающей средой. Мембрана – весьма активная, постоянно работающая структура клетки, на которую природой возложено множество функций. Из нашей статьи вы узнаете всё о составе, строении, свойствах и функциях клеточной мембраны, а также о той опасности, которую представляют для здоровья человека нарушения в работе клеточных мембран.

История исследования клеточной мембраны

В 1925 году двое немецких учёных, Гортер и Грендель, смогли провести сложнейший эксперимент над красными кровяными тельцами человеческой крови, эритроцитами. С помощью осмотического удара исследователи получили так называемые «тени»–  пустые оболочки эритроцитов, затем сложили их в одну стопку и измерили площадь поверхности. Следующим шагом стало вычисление количества липидов в клеточной мембране. С помощью ацетона учёные выделили липиды из «теней» и определили, что их как раз хватает на двойной сплошной слой.

Однако в ходе эксперимента было допущено две грубейших ошибки:

  • Использование ацетона не позволяет выделить из мембран абсолютно все липиды;

  • Площадь поверхности «теней» была высчитана по сухому весу, что тоже неправильно.

Поскольку первая ошибка давала минус в расчётах, а вторая – плюс, общий результат оказался на удивление точным, и немецкие учёные принесли в научный мир важнейшее открытие – липидный бислой клеточной мембраны.

В 1935 году другая пара исследователей, Даниэлли и Доусон, после долгих экспериментов над билипидными плёнками пришли к выводу о присутствии в клеточных мембранах белков. Иначе никак нельзя было объяснить, почему эти плёнки обладают таким высоким показателем поверхностного натяжения. Учёные представили вниманию общественности схематическую модель клеточной мембраны, похожую на сэндвич, где роль кусочков хлеба играют однородные липидно-белковые слои, а между ними вместо масла – пустота.

В 1950 году с помощью первого электронного микроскопа теорию Даниэлли-Доусона удалось частично подтвердить – на микрофотографиях клеточной мембраны были отчётливо видны два слоя, состоящих из липидных и белковых головок, а между ними прозрачное пространство, заполненное лишь хвостиками липидов и белков.

В 1960 году, руководствуясь этими данными, американский микробиолог Дж. Робертсон разработал теорию о трёхслойном строении клеточных мембран, которая долгое время считалась единственно верной. Однако по мере развития науки рождалось всё больше сомнений относительно однородности этих слоёв. С точки зрения термодинамики такое строение крайне невыгодно – клеткам было бы очень сложно транспортировать вещества внутрь и наружу через весь «бутерброд». Кроме того, было доказано, что клеточные мембраны разных тканей имеют разную толщину и способ крепления, что обусловлено разными функциями органов.

В 1972 году микробиологи С.Д. Сингер и Г.Л. Николсон смогли объяснить все нестыковки теории Робертсона с помощью новой, жидкостно-мозаичной модели клеточной мембраны. Учёные установили, что мембрана неоднородна, ассиметрична, наполнена жидкостью, и её клетки пребывают в постоянном движении. А белки, входящие в её состав, имеют разное строение и назначение, кроме того, они по-разному располагаются относительно билипидного слоя мембраны.

В составе клеточных мембран присутствуют белки трёх видов:

  • Периферические – крепятся на поверхности плёнки;

  • Полуинтегральные – частично проникают внутрь билипидного слоя;

  • Интегральные – полностью пронизывают мембрану.

Периферические белки связаны с головками мембранных липидов посредством электростатического взаимодействия, и они никогда не образуют сплошной слой, как принято было считать ранее.А полуинтегральные и интегральные белки служат для транспортировки внутрь клетки кислорода и питательных веществ, а также для вывода из неё продуктов распада и ещё для нескольких важных функций, о которых вы узнаете далее.

Подробнее:Биологические функции липидов


Свойства и функции клеточной мембраны

Свойства и функции клеточной мембраны

Клеточная мембрана выполняет следующие функции:

  • Барьерную – проницаемость мембраны для разных типов молекул неодинакова.Чтобы миновать оболочку клетки, молекула должна иметь определённый размер, химические свойства и электрический заряд. Вредные или неподходящие молекулы, благодаря барьерной функции клеточной мембраны, просто не могут проникнуть внутрь клетки. Например, с помощью реакции пероксиса мембрана защищает цитоплазму от опасных для неё пероксидов;

  • Транспортную – сквозь мембрану проходит пассивный, активный, регулируемый и избирательный обмен. Пассивный обмен подходит для жирорастворимых веществ и газов, состоящих из очень маленьких молекул. Такие вещества проникают внутрь и выходят из клетки без затрат энергии, свободно, методом диффузии. Активная транспортная функция клеточной мембраны задействуется тогда, когда в клетку или из неё нужно провести необходимые, но трудно транспортируемые вещества. Например, обладающие большим размером молекул, или неспособные пересечь билипидный слой из-за гидрофобности. Тогда начинают работать белки-насосы, в том числе АТФаза, которая отвечает за всасывание в клетку ионов калия и выбрасывание из неё ионов натрия. Регулируемый транспортный обмен необходим для осуществления функций секреции и ферментации, например, когда клетки производят и выделяют гормоны или желудочный сок. Все эти вещества выходят из клеток через специальные каналы и в заданном объёме. А избирательная транспортная функция связана с теми самыми интегральными белками, которые пронизывают мембрану и служат каналом для входа и выхода строго определённых типов молекул;

  • Матричную – клеточная мембрана определяет и фиксирует расположение органоидов относительно друг друга (ядра, митохондрий, хлоропластов) и регулирует взаимодействие между ними;

  • Механическую – обеспечивает ограничение одной клетки от другой, и, в то же время,— правильное соединение клеток в однородную ткань и устойчивость органов к деформации;

  • Защитную – как у растений, так и у животных, клеточная мембрана служит основой для построения защитного каркаса. Примером могут служить твёрдая древесина, плотная кожура, колючие шипы. В животном мире тоже много примеров защитной функции клеточных мембран – черепаший панцирь, хитиновая оболочка, копыта и рога;

  • Энергетическую — процессы фотосинтеза и клеточного дыхания были бы невозможны без участия белков клеточной мембраны, ведь именно с помощью белковых каналов клетки обмениваются энергией;

  • Рецепторную— белки, встроенные в клеточную мембрану, могут обладать ещё одной важной функцией. Они служат рецепторами, благодаря которым клетка получает сигнал от гормонов и нейромедиаторов. А это, в свою очередь, необходимо для проведения нервных импульсов и нормального течения гормональных процессов;

  • Ферментативную — ещё одна важная функция, присущая некоторым белкам клеточных мембран. Например, в эпителии кишечника с помощью таких белков синтезируются пищеварительные ферменты;

  • Биопотенциальную – концентрация ионов калия внутри клетки значительно выше, чем снаружи, а концентрация ионов натрия, наоборот, снаружи больше, чем внутри. Этим и объясняется разность потенциалов: внутри клетки заряд отрицательный, в снаружи положительный, что способствует движению веществ внутрь клетки и наружу при любом из трёх типов обмена – фагоцитозе, пиноцитозе и экзоцитозе;

  • Маркировочную – на поверхности клеточных мембран имеются так называемые «ярлыки» - антигены, состоящие из гликопротеинов (белков с присоединёнными к ним разветвлёнными олигосахаридными боковыми цепями). Поскольку боковые цепи могут иметь огромное множество конфигураций, каждый тип клеток получает свой уникальный ярлык, который позволяет другим клеткам организма узнавать их «в лицо» и правильно на них реагировать. Вот почему, например, иммунные клетки человека, макрофаги, без труда распознают чужака, проникшего в организм (инфекцию, вирус) и пытаются его уничтожить. То же самое происходит с больными, мутировавшими и старыми клетками – ярлык на их клеточной мембране меняется, и организм избавляется от них.

Клеточный обмен происходит через мембраны, и может осуществляться с помощью трёх основных типов реакций:

  • Фагоцитоз – клеточный процесс, при котором встроенные в мембрану клетки-фагоциты захватывают и переваривают твёрдые частички питательных веществ. В человеческом организме фагоцитоз осуществляется мембранами двух типов клеток: гранулоцитов (зернистых лейкоцитов) и макрофагов (иммунных клеток-убийц);

  • Пиноцитоз – процесс захвата поверхностью клеточной мембраны соприкасающихся с нею молекул жидкости. Для питания по типу пиноцитоза клетка выращивает на своей мембране тонкие пушистые выросты в форме усиков, которые как бы окружают капельку жидкости, и получается пузырёк. Сначала этот пузырёк выпячивается над поверхностью мембраны, а затем «проглатывается» - прячется внутрь клетки, и его стенки сливаются уже с внутренней поверхностью клеточной мембраны. Пиноцитоз проходит почти во всех живых клетках;

  • Экзоцитоз – обратный процесс, при котором внутри клетки образуются пузырьки с секреторной функциональной жидкостью (ферментом, гормоном), и её необходимо как-то вывести из клетки в окружающую среду. Для этого пузырёк сначала сливается с внутренней поверхностью клеточной мембраны, затем выпячивается наружу, лопается, исторгает содержимое и снова сливается с поверхностью мембраны, на этот раз уже с внешней стороны. Экзоцитоз проходит, например, в клетках кишечного эпителия и коры надпочечников.


Строение клеточной мембраны

Клеточные мембраны содержат липиды трёх классов:

  • Фосфолипиды;

  • Гликолипиды;

  • Холестерол.

Строение клеточной мембраны

Фосфолипиды (комбинация жиров и фосфора) и гликолипиды (комбинация жиров и углеводов), в свою очередь, состоят из гидрофильной головки, от которой отходят два длинных гидрофобных хвостика. А вот холестерол иногда занимает пространство между этими двумя хвостиками и не даёт им изгибаться, что делает мембраны некоторых клеток жёсткими . Кроме того, молекулы холестерола упорядочивают структуру клеточных мембран и препятствуют переходу полярных молекул из одной клетки в другую.

Но самой важной составляющей, как видно из предыдущего раздела о функциях клеточных мембран, являются белки. Их состав, назначение и расположение весьма разнообразны, но есть нечто общее, что всех их объединяет: вокруг белков клеточных мембран всегда расположены аннулярные липиды. Это особые жиры, которые чётко структурированы, устойчивы, имеют в своём составе больше насыщенных жирных кислот, и выделяются из мембран вместе с «подшефными» белками. Это своего рода персональная защитная оболочка для белков, без которой они бы просто не работали.

Структура клеточной мембраны трёхслойна. Посередине пролегает относительно однородный жидкий билипидный слой, а белки покрывают его с обеих сторон подобием мозаики, частично проникая в толщу. То есть, неправильно было бы думать, что внешние белковые слои клеточных мембран непрерывны. Белки, помимо своих сложных функций, нужны в мембране для того, чтобы пропускать внутрь клеток и транспортировать из них наружу те вещества, которые неспособны проникнуть сквозь жировой слой. К примеру, ионы калия и натрия. Для них предусмотрены специальные белковые структуры – ионные каналы, подробнее о которых мы расскажем далее.

Если взглянуть на клеточную мембрану через микроскоп, то можно увидеть слой липидов, образованный мельчайшими шарообразными молекулами, по которому, как по морю, плавают большие белковые клетки разной формы. Точно такие же мембраны делят внутреннее пространство каждой клетки на отсеки, в которых уютно располагаются ядро, хлоропласты и митохондрии. Не будь внутри клетки отдельных «комнат», органоиды бы слиплись друг с другом и не смогли бы выполнять свои функции правильно.

Клетка – это структурированная и отграниченная с помощью мембран совокупность органоидов, которая участвует в комплексе энергетических, метаболических, информационных и репродуктивных процессов, обеспечивающих жизнедеятельность организма.

Как видно из этого определения, мембрана является важнейшей функциональной составляющей любой клетки. Её значение так же велико, как значение ядра, митохондрий и прочих клеточных органелл. А уникальные свойства мембраны обусловлены её строением: она состоит из двух плёночек, слепленных друг с другом особым образом. Молекулы фосфолипидов в мембране расположены гидрофильными головками наружу, а гидрофобными хвостами внутрь. Поэтому одна сторона плёночки смачивается водой, а другая – нет. Так вот, эти плёночки соединяются друг с другом несмачиваемыми сторонами внутрь, образуя билипидный слой, окруженный молекулами белков. Это и есть то самое «бутербродное» строение клеточной мембраны.

Ионные каналы клеточных мембран

Рассмотрим более подробно принцип работы ионных каналов. Для чего они нужны? Дело в том, что сквозь липидную мембрану беспрепятственно могут проникать только жирорастворимые вещества – это газы, спирты и сами жиры. Так, например, в красных кровяных тельцах постоянно происходит обмен кислорода и углекислого газа, и для этого нашему организму не приходится прибегать ни к каким дополнительным ухищрениям. Но как же быть, когда возникает необходимость в транспортировке сквозь клеточную мембрану водных растворов, таких, как соли натрия и калия?

Проложить в билипидном слое путь для таких веществ было бы невозможно, поскольку отверстия бы тут же затянулись и слиплись обратно, такова уж структура любой жировой ткани. Но природа, как всегда, нашла выход из ситуации, и создала специальные белковые транспортные структуры.

Существует два типа проводящих белков:

  • Транспортеры – полуинтегральные белки-насосы;

  • Каналоформеры – интегральные белки.

Белки первого типа частично погружены в билипидный слой клеточной мембраны, а головкой выглядывают наружу, и в присутствии нужного вещества они начинают вести себя, как насос: притягивают молекулу и всасывают её внутрь клетки. А белки второго типа, интегральные, имеют вытянутую форму и располагаются перпендикулярно билипидному слою клеточной мембраны, пронизывая её насквозь. По ним, как по тоннелям, в клетку и из клетки движутся вещества, неспособные проходить сквозь жир. Именно через ионные каналы внутрь клетки проникают ионы калия и накапливаются в ней, а ионы натрия, наоборот, выводятся наружу. Возникает разность электрических потенциалов, так необходимая для правильной работы всех клеток нашего организма.

[Учебное видео] Строение плазматической мембраны клетки:


Важнейшие выводы о строении и функциях клеточных мембран

вывод

Теория всегда выглядит интересной и перспективной, если её можно с пользой применить на практике. Открытие строения и функций клеточных мембран человеческого организма позволило учёнымсовершить настоящий прорыв в науке в целом, и в медицине в частности. Мы не случайно так подробно остановились на ионных каналах, ведь именно здесь кроется ответ на один из важнейших вопросов современности: почему люди всё чаще заболевают онкологией?

Рак ежегодно уносит около 17 миллионов жизней во всём мире, и является четвёртой по частоте причиной всех смертей. По данным ВОЗ, заболеваемость онкологией неуклонно увеличивается, и к концу 2020 года может достигнуть 25 миллионов в год.

Чем объясняется настоящая эпидемия рака, и причём тут функции клеточных мембран? Вы скажете: причина в плохой экологической обстановке, неправильном питании, вредных привычках и тяжёлой наследственности. И, конечно, будете правы, но если говорить о проблеме более предметно, то причина в закисленности человеческого организма. Перечисленные выше негативные факторы приводят к нарушению работы клеточных мембран, угнетают дыхание и питание.

Там, где должен быть плюс, образуется минус, и клетка не может нормально функционировать. А вот раковым клеткам не нужны ни кислород, ни щелочная среда – они способны использовать анаэробный тип питания. Поэтому в условиях кислородного голодания и зашкаливающего уровня pH здоровые клетки мутируют, желая приспособиться к окружающей среде, и становятся раковыми клетками. Так человек и заболевает онкологией. Чтобы этого избежать, нужно всего лишь употреблять достаточное количество чистой воды ежедневно, и отказаться от канцерогенов в пище. Но, как правило, люди прекрасно знают о вредных продуктах и потребности в качественной воде, и ничего не предпринимают – надеются, что беда обойдет их стороной.

Зная особенности строения и функций клеточных мембран разных клеток, врачи могут использовать эти сведения для оказания направленного, адресноготерапевтического воздействия на организм. Многие современные лекарственные препараты, попадая в наше тело, ищут нужную «мишень», в качестве которой могут выступать ионные каналы, ферменты, рецепторы и биомаркеры клеточных мембран. Такой способ лечения позволяет добиться более высоких результатов при минимальных побочных эффектах.

Антибиотики последнего поколения при попадании в кровь не убивают все клетки подряд, а ищут именно клетки возбудителя, ориентируясь на маркеры в его клеточных оболочках. Новейшие препараты против мигрени, триптаны, сужают только воспалённые сосуды головного мозга, при этом почти никак не влияя на сердце и периферическую кровеносную систему. И узнают они нужные сосуды именно по белкам их клеточных мембран. Таких примеров множество, поэтому можно с уверенностью сказать, что знания о строении и функциях клеточных оболочек лежит в основе развития современной медицинской науки, и спасает миллионы жизней каждый год.

Обсудить статьюОбсудить
Внимание

Внимание! Информация носит ознакомительный характер и не может использоваться для самодиагностики и назначения лечения. Всегда консультируйтесь с профильным врачом!

Обсудить/задать вопрос


Комментарии проходят модерацию Количество комментариев


Заболевания по буквам
 
Витамины: